
Learning to Create Jazz Melodies Using a Product of Experts

Daniel D. Johnson and Robert M. Keller
Department of Computer Science

Harvey Mudd College
Claremont, CA 91711 USA

ddjohnson@hmc.edu
keller@hmc.edu

Nicholas Weintraut
Department of Computer Science

Rowan University
Glassboro, New Jersey 08028

weintraun8@students.rowan.edu

Abstract

We describe a neural network architecture designed to
learn the musical structure of jazz melodies over chord
progressions, then to create new melodies over arbi-
trary chord progressions from the resulting connectome
(representation of neural network structure). Our ar-
chitecture consists of two sub-networks, the interval
expert and the chord expert, each being LSTM (long
short-term memory) recurrent networks. These two
sub-networks jointly learn to predict a probability dis-
tribution over future notes conditioned on past notes in
the melody. We describe a training procedure for the
network and an implementation as part of the open-
source Impro-Visor (Improvisation Advisor) applica-
tion, and demonstrate our method by providing impro-
vised melodies based on a variety of training sets.

1 Introduction
Substantial work has been done on creation of music by
computation, ranging from grammar-based methods (Keller
and Morrison, 2007; Gillick, Tang, and Keller, 2010) or ge-
netic algorithms (Biles, 1994) to neural network approaches,
including recurrent models (Eck and Schmidhuber, 2002;
Franklin, 2004) and deep belief networks (Bickerman et al.,
2010). These approaches have had varying success in cre-
ating convincing jazz melodies over specific chord progres-
sions.

In the current work, we focus on applying recurrent neu-
ral networks to the task of music improvisation. Recurrent
models are particularly well suited for sequence prediction
tasks, as they are structured to learn patterns across multi-
ple time steps. In particular, LSTM networks (Hochreiter
and Schmidhuber, 1997) have been shown to be able to in-
fer complex patterns across many time steps based on data.
Additionally, neural network models are interesting to ex-
plore because they do not require a large amount of domain
knowledge to be explicitly encoded. When given only a lim-
ited amount of information about the musical domain, neural
networks can use patterns in their training data to discover
what makes something musical. This makes them interest-
ing to study as creative systems.

One particularly important component of any neural-
network generative model of music is the representation
chosen for the task. We use a pair of encodings, motivated

by the observation that good jazz melodies have both inter-
esting contours as well as pitches that are sonorous with the
chord progression. One encoding is based on intervals be-
tween adjacent notes and the other is based on harmonic
relationships with the current chord in the chord progres-
sion. Each encoding is processed by a separate network
component, and each component produces a candidate note
probability distribution. These distributions are then com-
bined using Product-of-Experts (Hinton, 2002) to produce
a final distribution over notes that can be trained using the
maximum-likelihood criterion.

2 Background
2.1 LSTM Recurrent Networks
Recurrent networks have been shown to be effective at a
wide variety of sequence based tasks. In particular, they
have been used in the past to model musical data. See Eck
and Schmidhuber (2002) and Franklin (2004) for a few ex-
amples.

Long Short-Term Memory Networks (LSTM), introduced
by Hochreiter and Schmidhuber (1997), have had great suc-
cess at many sequence modeling tasks. They combat the
“vanishing gradient” problem in standard recurrent networks
by introducing memory cells that can store state through
multiple time steps. An LSTM neuron consists of a series
of gates that activate according to the update equations

ft = σ(Wf · [ht−1, xt] + bf)

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ftCt−1 + itC̃t

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot tanh(Ct)

whereCt represents the contents of the memory cells at time
t, xt is the input, and ht is the hidden activations of the
LSTM cell. The network consists of one or more layers of
LSTM neurons connected with feedback from output to in-
put.

2.2 Product of Experts
Hinton (2002) proposed a system known as Product of Ex-
perts (PoE) for combining multiple models of the same

START

25% “C”
20% “Db”
15% “G#”
10% “B”
...

“C”

40% “F”
35% “G”
10% “Bb”
 5% “A”
...

“G”

90% “F”
 2% “A”
 2% “Bb”
 1% “D”
...

“F”

…
…
…
…
…

Figure 1: Overview of the network operation, unrolled over four time steps. Inputs are given one time step at a time, and
the network outputs a probability distribution predicting the next input. Output is scored based on the probability of correct
prediction (highlighted). Dashed arrows represent time-delayed recurrent connections. Although there is also chord input
present, we do not show it to avoid clutter.

data. To combine a series of N experts with parame-
ters Θ1,Θ2, . . . ,ΘN and associated probability distribu-
tions f1(·|Θ1), f2(·|Θ2), . . . , fN (·|ΘN), one can renormal-
ize the product of their individual distributions, i.e.

p(x|Θ1,Θ2, . . .) =

∏N
m=1 fm(x|Θm)∑

c

∏N
m=1 fm(c|Θm)

,

where m indexes all experts, and c indexes all possible vec-
tors in the data space. Notice the similarity of this expres-
sion to the definition of conditional probability: p(A|B) =
p(A∩B)
p(B) . In fact, this product can be interpreted as the con-

ditional probability that all experts choose x, given that all
experts choose the same vector from the data space.

When x is a continuous vector in some high-dimensional
data space, computing the sum

∑
c

∏
m fm(c|Θm) and its

gradient are both intractable. As such, it is difficult to max-
imize the log-likelihood of observed data given the model,
which led Hinton to propose using contrastive divergence to
train such a model. However, if x is a discrete variable in a
finite space, as it is here, and each probability distribution fi
is a categorical distribution, the sum can be directly evalu-
ated.

3 Network Structure
Following previous work on LSTM-based models (Eck
and Schmidhuber, 2002; Franklin, 2004; Boulanger-
lewandowski, Bengio, and Vincent, 2012), we break each
piece into a set of discrete time steps of a specific length
(the length of one 32nd-note triplet). The network is de-
signed to receive the previous note played as input at each
step, producing as output a set of probabilities for which note
to play at the next time step. The network is trained using
the maximum-likelihood objective (i.e. choose the network
model that assigns the highest probability to the true training
data). Figure 1 gives an overview of the network’s operation.

In order to fully develop a LSTM-based model for jazz
melodies, we needed to choose a representation for the mu-

sical data for the network to understand. Furthermore, dif-
ferent representations might lead to different types of be-
havior. For instance, if we simply represented the notes by a
bit-vector where each bit corresponded to a single note, the
model would not be able to generalize well to different in-
tervals and other patterns, as it would have to learn relation-
ships between each note separately. Franklin (2004) found
that representations that were motivated by musical relation-
ships led to better performance than more naive approaches.

Two aspects of jazz melodies on which we decided the
network should focus are the contour of the melody (i.e.
how the notes rise and fall over time) and the consonance
of the melody with the underlying chord progression (i.e.
whether the notes sound good when played over chord or
whether they are dissonant). (These aspects could be seen
as “viewpoints” in the sense of Conklin and Witten (1995)).
We also wanted our network to be transposition invariant,
as used in Johnson (2017), so as to make similar predictions
for inputs that are transposed by focusing on the position of
notes relative to the roots of the chords.

To accomplish these goals, we decided to use two encod-
ings, one that focuses on intervals between successive notes,
and the other that focuses on intervals of notes relative to
the chord progression. We thus split our network into two
network modules. The interval expert module receives an
interval-based encoding, while the chord expert receives the
chord-based encoding. This enables the network to learn
particular relationships relative to the current trajectory of
the melody (as learned by the interval expert) and also rela-
tive to the current chord progression (as learned by the chord
expert). Each of these modules produces a probability dis-
tribution over which note to choose at the next time step.
This probability distribution represents the level of belief
that those notes should be chosen to play next. The encod-
ings used are depicted in Figure 2.

To combine the output of the two experts, we use the
product-of-experts equation described in detail in section
2.2. This was motivated by the desire to create melodies

Figure 2: Visualization of the input encodings for the two
networks. Top: a section of a training melody. Middle:
Interval encoding of the contour. Bottom: Chord-relative
encoding of note pitch, with the highlighted space or line
representing the root of the chord.

based on both contour and harmonic relationship with the
chords. Thus we want to lessen the probability that the com-
bined networks choose a note deemed unlikely by either ex-
pert. The combination of the two expert networks is shown
in Figure 3.

3.1 Encodings
The interval expert is designed to learn relationships be-
tween consecutive notes. Each index in the interval encod-
ing of a note represents a possible interval jump, ranging
from −12 (down one octave) to +12 (up one octave). This
encoding also includes an option of resting, i.e. not playing
a note, and one for sustaining the previous note, for a total
of 27 possibilities.

The chord expert, on the other hand, is designed to learn
relationships between pitches and the chord. This encod-
ing consists of 12 pitch classes, relative to the current chord
root (e.g. if the root of the current chord is F, then in-
dices 0, 1, 2, . . . correspond to notes F + 0 = F, F + 1 =
G[, F + 2 = G, . . .). Again, the encoding also includes an
option of resting, and one for sustaining the previous note,
for a total of 14 possibilities.

Each expert receives as input:
1. the note chosen at the previous time step, encoded using

the corresponding expert’s output format (so the interval
expert receives the previous interval jump, and the chord
expert receives the previous relative pitch class).

2. a beat vector giving the position of the current time step
in a measure.

3. a position vector giving the position of the previous note
relative to the upper and lower bounds.

4. a chord vector giving the notes of the current chord rela-
tive to the expert’s current position.
The beat vector for each time step is constructed using a

set of reference note durations. Each reference note duration
has a corresponding index into the beat vector, and the beat

Interval
Expert

Chord
Expert

Input Output×

Figure 3: Diagram of the two expert subnetworks. Note
that each expert is an independent recurrent network, with
output distributions combined using product-of-experts (de-
noted with×). Dashed arrows represent time-delayed recur-
rent connections.

vector is 1 at that index if and only if the current time step is a
multiple of that note duration. For instance, using reference
note durations of [whole note, half note, quarter note, eighth
note], the values of the beat vector at each eighth note in a
measure would consist of the following sequence of four-
dimensional vectors.

1 1 1 1
0 0 0 1
0 0 1 1
0 0 0 1
0 1 1 1
0 0 0 1
0 0 1 1
0 0 0 1

The beat vector we actually use is of length 9, consisting of
whole, half, quarter, eighth, sixteenth, half-triplet, quarter-
triplet, eighth-triplet, and sixteenth-triplet.

The position vector consists of two floating-point values.
The first element of the vector is 1 at the lowest note of the
network range and 0 at the highest note. The second is 1
at the highest note and 0 at the lowest. Each linearly inter-
polates its values between the two bounds. This allows the
network to learn different behavior when playing high notes
and low notes.

The chord vector has length 12. Each index of the chord
vector corresponds to a pitch class, and the chord vector has
a 1 at that index if and only if that pitch class is part of the
current chord. These pitch classes are relative to the expert
encoding position: for the interval expert, since notes are
chosen as jumps relative to the previous note, the chord vec-
tor is rotated so that the previous note is at index 0; and for
the chord expert, since notes are chosen relative to the root
of the chord, the chord vector is rotated so that the root of
the chord is at index 0.

Each expert gives probabilities relative to a particular po-
sition. To combine the distributions of the experts into a sin-
gle distribution, we shift the relative distribution encodings
to align them to absolute note positions, clip the probability
distributions to a specific note range (three octaves), take the
product of the distributions, and then normalize the resulting
vector back into a categorical probability distribution (i.e. so
that the probabilities sum to 1).

4 Training
Our network is trained using the cross-entropy between the
network predictions at each time step and the correct notes
chosen in the training data. Equivalently, we want to maxi-
mize (the log-likelihood of) the probability that the network
outputs the training data perfectly, since we want the net-
work to output improvisations that are similar to the training
data. We can express the probability of a whole melodic seg-
ment as a product of conditional distributions at each time
step, i.e. the probability of generating a segment x from pa-
rameters Θ can be factored as

p(x|Θ) = p(x0|Θ)p(x1|x0,Θ)p(x2|x0, x1,Θ) · · ·

=
∏
t∈T

p(xt|xt−1, xt−2, . . . ,Θ).

Notice that the output of the network at some time step t
is conditioned on all previous time steps, due to the recur-
rent nature of the network. Thus p(xt|xt−1, xt−2, . . . ,Θ) is
given by the output of the network at time t after receiving
xt−1, xt−2, . . . as input. To evaluate the full probability of
the decoder outputting the input segment, we give the net-
work the observed segment as input, and then accumulate
the log-likelihood that the network assigns to the next notes
of the observed segment. This gives us the loss

Lreconstruct = − log(p(x|Θ))

= −
∑
t∈T

log(p(xt|xt−1, xt−2, . . . ,Θ)).

To train our network, we can then compute the gradient of
the loss with respect to our parameters Θ by performing
backpropagation through time (Werbos, 1990).

In our experiments, each expert subnetwork was imple-
mented as two LSTM layers, each with 300 nodes. Dur-
ing training, dropout of 0.5 was applied to the non-recurrent
connections between layers (Srivastava et al., 2014; Pham
et al., 2014). We used the ADAM optimizer, introduced by
Kingma and Ba (2014), to automatically set the learning rate
for our training procedure.

4.1 Generation
After our model is fully trained, we can use it to create new
melodies from the learned probability distribution. At each
time step, starting from the beginning of the piece, we com-
pute the probability distribution output by our model. We
then choose the next note to play proportionally to the prob-
ability assigned to that note by our model. This note is
then fed back into the model as the input for the next time
step, and a probability distribution for the next time step is
computed. This process repeats until we have created a full
melody segment.

Optionally, we can modify the probability distribution be-
fore sampling from it, in order to modify or constrain the
output of the network. The first way to modify the distribu-
tion is to vary the ratios between note probabilities. Specif-
ically, if the probability of playing note i is given by pi, we
can replace this with

p′i =
pxi∑
j p

x
j

.

Small values of x make the model more “adventurous” by
causing the probabilities to become more similar to each
other, and large values of x will cause the model to be “con-
servative” by sampling high-probability notes more often
and low-probability notes less often. Setting x = 1 results
in the original probability distribution.

Another means of modifying the distribution is to mod-
ify the weights assigned to each expert. Instead of comput-
ing the probabilities by simply multiplying the probability
distributions given by each expert, we can instead use expo-
nents to change the weights assigned to each. If ai and bi
represent the probabilities assigned by each expert, we ob-
tain

p′i =
a1+x
i b1−xi∑
j a

1+x
j b1−xj

.

This allows the distribution to be biased toward the predic-
tions of a single expert.

Finally, certain elements of the probability distribution
can be set to zero in order to prevent sampling particular
notes. This can be used either to limit which notes can be
played (for instance by only allowing chord tones) or to re-
strict note durations.

5 Implementation
The software described here is implemented in two parts,
one for training and the other for creation. The neural net-
work training program was implemented using the Theano
machine learning framework. The program reads and parses
input pieces, such as jazz solo transcriptions, in Impro-
Visor’s leadsheet notation, trains a neural network model us-
ing those pieces as examples, then outputs a “connectome”
file, containing the learned parameters of all of the network
components for use in the second part.

To explore the use of our neural network model as an ed-
ucational tool, we implemented the second part in Java as
an extension to the open-source Impro-Visor tool (Keller;
Johnson). This extension allows a trained connectome file
to be loaded and new improvisations to be created in real
time over any chord progression, including trading melodies
with a human player.

The improvisation part also possesses a number of param-
eters, which can be used to modify the network output in
various ways:

• Risk Level: This option determines how the network out-
put probability distribution is scaled, allowing the user to
produce either more original but potentially less conso-
nant melodies or more consonant but possibly less inter-
esting melodies.

• Expert Weighting: This option allows the user to put
more emphasis on the chord expert or the interval expert,
allowing the user to tune the relationship between contour
and pitch.

• Rest Limiting: This option is designed to prevent the net-
work from playing long rests (often due to the presence of
long rests in the training set). If enabled, the probability
distributions are modified so that rests cannot be played
for too many consecutive time steps.

Figure 4: Screen capture of the Impro-Visor deep-learning model control panel.

• Rectification: If enabled, this option prevents the net-
work from playing notes that would be dissonant based
on the current chord progression. This can help prevent
“mistakes” caused by the network randomly choosing dis-
sonant notes with some low but nonzero probability. It
can also automatically merge repeated pitches into a sin-
gle held pitch.

Figure 4 shows the user interface for adjusting these param-
eters in Impro-Visor.

One advantage of using a recurrent neural network model
is that arbitrarily long output can be produced simply by run-
ning the network for additional time steps while maintain-
ing the internal state. However, since running the network
requires many matrix multiplications, it may take a few sec-
onds to create a few seconds of output. To enable quasi-
real-time creation and playback, we implemented a “just-in-
time” improvisation process that uses a background thread
to produce network output for the next four bars while the
previous four bars are being played by Impro-Visor. Then,
once playback reaches the end of the existing region, the
newly-created four bars are substituted in, and creation be-
gins for the subsequent four bars.

As one application of real-time creation, we integrated the
neural network into Impro-Visor’s “passive trading” mode.
In this mode, Impro-Visor alternates between playing back
newly-improvised music and recording user input, allowing
the user and the computer model to synthesize a combined
piece. This was a natural fit for the just-in-time neural net-
work improvisation procedure.

6 Results and Evaluation
Using the network model described herein, we successfully
trained connectomes from a variety of corpora, ranging from
licks in specific keys to full solo transcriptions from a vari-
ety of well-known jazz players. In all cases, we are able to
create solos of arbitrary length, and in real-time, from these
connectomes. Figure 5 compares a melody created with the
current model to one created by a grammar trained from the
same corpus. Subjectively evaluated by an experienced jazz
player (co-author Keller), the improvised solos exhibited oc-
casional shortcomings, such as:

• occasional “wrong” notes, such as a major 3rd that ob-
viously should be minor, or a minor 9th over a minor or
major chord, which is usually not advised, but which hu-
man players also play on occasion

• occasional rote learning of melody from the original cor-
pus, albeit correctly transposed, also a characteristic of
human players

Both of these shortcomings may be partially attributed to
the size of our dataset; the first may represent a failure to
learn musical rules of thumb, while the second may be in-
dicative of over-fitting. A larger corpus could be used to
improve the generalization ability of our model and prevent
it from “memorizing” melodies in the training data.

The Impro-Visor website (Keller) gives these examples,
along with the Impro-Visor leadsheet files, MIDI files, and
the common training corpus used for both the network con-
nectome and the grammar. It should be kept in mind that

Figure 5: Samples of output created over the chord progression to “Corcovado” by Antonio Carlos Jobim from a connectome
trained on a large corpus of licks and solo transcriptions. The corpus did not include a solo for this tune. Top: Version created
by our neural network model, with default settings midway between Risky vs. Adventurous, and Contour vs. Pitch preference.
Bottom: Version created by Impro-Visor’s grammar-based methods trained on the same corpus. Black notes are notes in the
current chord, green notes are “color tones”, i.e. sonorous with the current chord, blue notes are “approach tones” that transition
to chord or color tones, and red notes are “outside” notes that do not fall into these categories. To make the comparison fair,
rectification, which would generally eliminate red notes, was not used in either sample.

this represents only one connectome and grammar, from one
corpus. Several corpora and corresponding connectomes are
available with the release, as are many grammars. Each
grammar or connectome can be applied to any tune or chord
progression.

Compared with the grammar-based creation in Impro-
Visor, the network-created solos are sometimes less coher-
ent. Our network model was built intentionally to have min-

imal musical knowledge. Since the grammar methods can
utilize more prior musical knowledge, and also use Markov
chaining of representative melody and abstract melody frag-
ments, the grammar-created samples possess more structure
than the network-created samples. Although the current cor-
pus is rather large, an even larger corpus with longer train-
ing time might allow our model to learn this latent musical
knowledge more effectively, improving the resulting output.

Interval expert

Chord expert

Final probability distribution (product)

Sampled notes

Sampled notes (musical notation)

Figure 6: Output of different components of the trained network while creating a new improvisation. Horizontal lines denote
octaves. Vertical lines denote quarter-note durations. The bottom two rows show sustain and rest probabilities. Note that, as
desired, the interval expert appears to focus on the direction of movement, the chord expert picks out particular notes that are
appropriate, and the combined distribution features note choices that are reasonable to both experts.

Compared with the second author’s earlier work based on
deep-belief networks Bickerman et al. (2010), melody cre-
ation is much faster with the current model. One reason
for this is that deep-belief networks are slow due to inter-
nal probabilistic operation. Unfortunately, the learning time
for either form of network is on the order of hours, versus
minutes for learning grammars.

To attempt to understand what it is that the model is learn-
ing, we visually examined the probability distributions gen-
erated by each of the experts as well as by the full net-
work. These distributions for a particular improvised four-
bar phrase are shown in Figure 6. As predicted, the interval
expert seems to learn to make a smooth contour, demon-
strated by the focus of the probability distribution around
the locations of previously played notes. The chord ex-
pert, on the other hand, identifies particular pitch classes as
more likely than others. Interestingly, the chord network
also seems to have learned to keep track of note durations.

7 Conclusions
We have presented a product-of-experts network approach
to learning to create improvised melodies over chord pro-
gressions. The network can learn from an arbitrary corpus
of existing solos, coded in the form of Impro-Visor’s lead-
sheet notation. The learning is then saved in the form of a
connectome, which can be loaded into Impro-Visor by the
user. Melodies can then be created over arbitrary chord pro-
gressions. Comparison with the grammar approach previ-
ously available in Impro-Visor indicates a slight subjective
superiority of grammars, suggesting that future work might
focus on improving the network model to understand larger
structural units of melodies.

8 Acknowledgements
We thank the National Science Foundation for providing
funding under CISE REU award number 1359170 and Har-
vey Mudd College for providing the equipment and facilities
for this project. We also thank the developers of Theano,
which we used to construct all of our models. We appreciate
the work of Joshua Zhao in transcribing many examples into
the training corpus.

References
Bickerman, G.; Bosley, S.; Swire, P.; and Keller, R. M.

2010. Learning to create jazz melodies using deep be-
lief nets. In ICCC-X, First International Conference on
Computational Creativity, 228–237.

Biles, J. A. 1994. GenJam: A genetic algorithm for gener-
ating jazz solos. In ICMC, volume 94, 131–137.

Boulanger-lewandowski, N.; Bengio, Y.; and Vincent,
P. 2012. Modeling temporal dependencies in high-
dimensional sequences: Application to polyphonic music
generation and transcription. In Proceedings of the 29th
International Conference on Machine Learning (ICML-
12), 1159–1166.

Conklin, D., and Witten, I. H. 1995. Multiple viewpoint
systems for music prediction. Journal of New Music Re-
search 24(1):51–73.

Eck, D., and Schmidhuber, J. 2002. A first look at music
composition using lstm recurrent neural networks. Istituto
Dalle Molle Di Studi Sull Intelligenza Artificiale 103.

Franklin, J. A. 2004. Recurrent neural networks and pitch
representations for music tasks. In FLAIRS Conference,
33–37.

Gillick, J.; Tang, K.; and Keller, R. M. 2010. Machine learn-
ing of jazz grammars. Computer Music Journal 34(3):56–
66.

Hinton, G. E. 2002. Training products of experts by
minimizing contrastive divergence. Neural computation
14(8):1771–1800.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.

Johnson, D. D. LSTMprovisor training program source
code. https://github.com/Impro-Visor/
lstmprovisor-python.

Johnson, D. D. 2017. Generating polyphonic music us-
ing tied parallel networks. In International Conference
on Evolutionary and Biologically Inspired Music and Art,
128–143. Springer.

Keller, R. M., and Morrison, D. R. 2007. A grammati-
cal approach to automatic improvisation. In Proceedings,
Fourth Sound and Music Conference, Lefkada, Greece,
July., 330–337.

Keller, R. M. Impro-Visor. https://www.cs.
hmc.edu/˜keller/jazz/improvisor/. Files
specific to this paper: https://www.cs.hmc.
edu/˜keller/jazz/improvisor/iccc2017/.
Source: https://github.com/Impro-Visor/.

Kingma, D., and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Pham, V.; Bluche, T.; Kermorvant, C.; and Louradour, J.
2014. Dropout improves recurrent neural networks for
handwriting recognition. In Frontiers in Handwriting
Recognition (ICFHR), 2014 14th International Confer-
ence on, 285–290. IEEE.

Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever,
I.; and Salakhutdinov, R. 2014. Dropout: a simple way
to prevent neural networks from overfitting. Journal of
Machine Learning Research 15(1):1929–1958.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical expres-
sions. arXiv e-prints abs/1605.02688.

Werbos, P. J. 1990. Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE
78(10):1550–1560.

https://github.com/Impro-Visor/lstmprovisor-python
https://github.com/Impro-Visor/lstmprovisor-python
https://www.cs.hmc.edu/~keller/jazz/improvisor/
https://www.cs.hmc.edu/~keller/jazz/improvisor/
https://www.cs.hmc.edu/~keller/jazz/improvisor/iccc2017/
https://www.cs.hmc.edu/~keller/jazz/improvisor/iccc2017/
https://github.com/Impro-Visor/

	Introduction
	Background
	LSTM Recurrent Networks
	Product of Experts

	Network Structure
	Encodings

	Training
	Generation

	Implementation
	Results and Evaluation
	Conclusions
	Acknowledgements

